Sains Malaysiana 54(3)(2025): 745-755

http://doi.org/10.17576/jsm-2025-5403-11

 

Pemodelan Kemeruapan dan Gelembung dalam Pasaran Mata Wang Kripto menggunakan Pendekatan Rantaian Markov Tersembunyi

(Modeling Volatility and Bubbles in Cryptocurrency Markets using Hidden Markov Chain Approach)

 

NURUL ‘AIN SYAFIQAH M.SAFEE & SAIFUL IZZUAN HUSSAIN*

 

Jabatan Sains Matematik, Fakulti Sains dan Teknologi, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia

 

Received: 23 May 2024/Accepted: 27 December 2024

 

Abstrak

Keadaan pasaran mata wang kripto sukar untuk dijangkakan kerana mempunyai kemeruapan yang tinggi. Kajian ini menggunakan model rantaian Markov tersembunyi dalam mengelaskan  pergerakan  utama mata wang kripto. Hasil kajian menunjukkan pasaran mata wang kripto beralih antara lima keadaan yang dikelaskan kepada beberapa pasaran menaik dan menurun mengikut tahap kemeruapan. Kejadian letusan gelembung pasaran yang berlaku semasa krisis mata wang kripto dikesan banyak berada dalam keadaan pasaran menurun dengan kemeruapan tertinggi. Hasil kajian yang diperoleh ini termasuklah kebarangkalian peralihan dapat digunakan oleh para pelabur bagi menyusun strategi pelaburan yang berkesan untuk memperoleh pulangan yang tinggi.

Kata kunci: Model rantaian Markov tersembunyi; pasaran menaik; pasaran menurun

 

Abstract

The cryptocurrency market is difficult to predict due to its high volatility. This study uses a hidden Markov chain model to classify the major movements of cryptocurrencies. The results of the study show that the cryptocurrency market alternates between five states, which are categorized into several bullish and bearish markets depending on the degree of volatility. The bursting of market bubbles that occurred during the cryptocurrency crisis was mostly found in bear market states with the highest volatility. Among the results of this study is the transition probability, which can be used by investors to formulate an effective investment strategy to achieve high returns.

Keywords: Bear market; bull market; hidden Markov model

 

REFERENCES

1 References

2  

Agosto, A. & Cafferata, A. 2020. Financial bubbles: A study of co-explosivity in the cryptocurrency market. Risks 8(2): 34. doi:10.3390/risks8020034

Baum, L.E., Petrie, T., Soules, G. & Weiss, N. 1970. A maximization technique occurring in the statistical analysis of probabilistic functions of Markov chains. Annals of Mathematical Statistics 41(1): 164-171. https://doi.org/10.1214/aoms/1177697196

Caferra, R. & Vidal-Tomás, D. 2021. Who raised from the abyss? A comparison between cryptocurrency and stock market dynamics during the COVID-19 pandemic. Finance Research Letters 43: 101954. doi:10.1016/j.frl.2021.101954

Caporale, G.M. & Zekokh, T. 2019. Modelling volatility of cryptocurrencies using Markov-Switching GARCH models. Research in International Business and Finance 48: 143-155. doi:10.1016/j.ribaf.2018.12.009

Chee, K.C. & Omar, N. 2020. Bitcoin price prediction based on sentiment of news article and market data with LSTM model. Asia-Pacific Journal of Information Technology and Multimedia 09(01): 1-16. doi:10.17576/apjitm-2020-0901-01

 

Chen, P., Yi, D. & Zhao, C. 2020. Trading strategy for market situation estimation based on hidden Markov model. Mathematics 8(7): 1126. https://doi.org/10.3390/math8071126

Chuen, D.L.K., Guo, L. & Wang, Y. 2018. Cryptocurrency: A new investment opportunity? Journal of Alternative Investments 20(3): 16-40. doi:10.3905/jai.2018.20.3.016

Conlon, T. & McGee, R. 2020. Safe haven or risky hazard? Bitcoin during the COVID-19 bear market. Finance Research Letters 35: 101607. doi:10.1016/j.frl.2020.101607

Cretarola, A. & Figà-Talamanca, G. 2020. Bubble regime identification in an attention-based model for Bitcoin and Ethereum price dynamics. Economics Letters 191: 108831. doi:10.1016/j.econlet.2019.108831

Drozdz, S., Kwapień, J., Oświecimka, P., Stanisz, T. & Watorek, M. 2020. Complexity in economic and social systems: Cryptocurrency market at around COVID-19. Entropy 22(9): 1043. doi:10.3390/E22091043

Giudici, P. & Abu Hashish, I. 2020. A hidden Markov model to detect regime changes in cryptoasset markets. Quality and Reliability Engineering International 36(6): 2057-2065. doi:10.1002/qre.2673

İçellioǧlu, C.S. & Öner, S. 2019. An investigation on the volatility of cryptocurrencies by means of heterogeneous panel data analysis. Procedia Computer Science 158: 913-920. doi:10.1016/j.procs.2019.09.131

Ismail, M.S., Hussain, S.I. & Noorani, M.S.M. 2020. Detecting early warning signals of major financial crashes in Bitcoin using persistent homology. IEEE Access 8: 179071-179087. doi:10.1109/ACCESS.2020.3015858

Iqbal, N., Fareed, Z., Wan, G. & Shahzad, F. 2021. Asymmetric nexus between COVID-19 outbreak in the world and cryptocurrency market. International Review of Financial Analysis 73: 101613. doi:10.1016/j.irfa.2020.101613

Malik, V. & Bandyopadhyay, S. 2021. Crypto-currency: A bubble waiting for a burst? Economy Polity Environment: An International Peer-reviewed Journal of Social Studies 3(1): 44-56.

Manimuthu, A., Raja Sreedharan, V., Rejikumar, G. & Marwaha, D. 2019. A literature review on Bitcoin: Transformation of crypto currency into a global phenomenon. IEEE Engineering Management Review 47(1): 28-35. doi:10.1109/EMR.2019.2901431

Mba, J.C. & Mwambi, S. 2020. A Markov-switching COGARCH approach to cryptocurrency portfolio selection and optimization. Financial Markets and Portfolio Management doi:10.1007/s11408-020-00346-4

Menton, J. 2021. Bitcoin briefly crashed again, wiping out 2021 gains. Here’s why. https://www.usatoday.com/story/money/markets/2021/06/22/bitcoin-price-update-ethereum-dogecoin-crashing-heres-why/5304172001/ (Diakses pada 30 Disember 2021).

Nekhili, R. & Sultan, J. 2020. Jump driven risk model performance in cryptocurrency market. International Journal of Financial Studies 8(2): 19. doi:10.3390/ijfs8020019

Özgür, Ö. 2020. Trend detection through segmentation using discrete hidden markov model. Journal of Economics and Administrative Sciences 38(2): 267-295. doi:10.17065/huniibf.530209

Pennoni, F., Bartolucci, F., Forte, G. & Ametrano, F. 2021. Exploring the dependencies among main cryptocurrency log-returns: A hidden Markov model. Munich Personal RePEc Archive. Paper No. 106150.

Schwaiger, F. 2013. Inference and application of likelihood based methods for hidden Markov models. PhD thesis. Mathematisch-naturwissenschaftlichen Fakultät, Philipps-Universität Marburg. http://archiv.ub.uni-marburg.de/diss/z2013/0416/

Zakamulin, V. 2020. Not all bull and bear markets are alike: Insights from a five-state hidden semi-Markov model. https://dx.doi.org/10.2139/ssrn.3678004

 

*Corresponding author; email: sih@ukm.edu.my

 

 

 

 

 

 

 

previous next